Investigation of mixing and diffusion processes in hybrid spot laser–MIG keyhole welding

نویسندگان

  • J Zhou
  • H L Tsai
چکیده

In hybrid laser–MIG keyhole welding, anti-crack elements can be added into the weld pool through a filler metal in anticipation of compensating mass loss, preventing porosity formation and improving compositional and mechanical properties of the welds. Understanding the mixing and diffusion of the filler metal in the molten pool is vital to achieve these desired objectives. In this study, mathematical models and associated numerical techniques have been developed to investigate the mixing and diffusion processes in hybrid laser–MIG keyhole welding. The transient interactions between droplets and weld pool and dynamics of the melt flow are studied. The effects of key process parameters, such as droplet size (wire diameter), droplet generation frequency (wire feed speed) and droplet impinging speed, on mixing/diffusion are systematically investigated. It was found that compositional homogeneity of the weld pool is determined by the competition between the mixing rate and the solidification rate. A small-size filler droplet together with high generation frequency can increase the latitudinal diffusion of the filler metal into the weld pool, while the large-size droplet along with the low generation frequency helps to get more uniform longitudinal diffusion. Increasing the impinging velocity of the filler droplet can improve the latitudinal diffusion of the filler metal. However, a high impinging velocity can cause a lower diffusion zone in the upper part of the welds. This study provides a good foundation for optimizing the hybrid laser–MIG keyhole welding process to achieve quality welds with desired properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of transport phenomena in hybrid laser-MIG keyhole welding

Mathematical models and associated numerical techniques have been developed to investigate the complicated transport phenomena in spot hybrid laser-MIG keyhole welding. A continuum formulation is used to handle solid phase, liquid phase, and the mushy zone during the melting and solidification processes. The volume of fluid (VOF) method is employed to handle free surfaces, and the enthalpy meth...

متن کامل

Optimization of TIG-MIG hybrid welding of 316L austenitic stainless steel

In the TIG-MIG hybrid welding, higher weld efficiency and better weld quality are obtained with respect to each individual TIG and MIG welding methods. Moreover, in this method, the MIG arc is more stable in pure argon shielding gas. Therefore, in this study, the influence of TIG-MIG hybrid welding parameters on the welds appearance quality and welds depth to width ratio of a 316L austenitic st...

متن کامل

Optimization of TIG-MIG hybrid welding of 316L austenitic stainless steel

In the TIG-MIG hybrid welding, higher weld efficiency and better weld quality are obtained with respect to each individual TIG and MIG welding methods. Moreover, in this method, the MIG arc is more stable in pure argon shielding gas. Therefore, in this study, the influence of TIG-MIG hybrid welding parameters on the welds appearance quality and welds depth to width ratio of a 316L austenitic st...

متن کامل

Experimental Effects Investigation of Ultrasonic Spot Welding on Dissimilar Al3105 and Al1050 Alloys Joining

The aluminum alloys of Al1050 with thickness of one millimeter and Al3105 with thickness of half millimeter  were joined via ultrasonic spot welding (USW). To create a suitable welding, a vibrating horn (welding tool) fit to transducer and ultrasonic generator was designed using ANSYS software. Due to mechanical and thermal cycles during USW, both diffusion and mechanical mixing facilitated the...

متن کامل

Experimental Effects Investigation of Ultrasonic Spot Welding on Dissimilar Al3105 and Al1050 Alloys Joining

The aluminum alloys of Al1050 with thickness of one millimeter and Al3105 with thickness of half millimeter  were joined via ultrasonic spot welding (USW). To create a suitable welding, a vibrating horn (welding tool) fit to transducer and ultrasonic generator was designed using ANSYS software. Due to mechanical and thermal cycles during USW, both diffusion and mechanical mixing facilitated the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009